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Abstract

We develop an adaptive halftoning technique that inc
porates a multichannel texture model. A filter bank
used to define a feature vector for each pixel. The 
ture vector is used to select an error constraint that 
preserve neighborhood features. Results indicate 
perceptually significant features can be enhanced w
preserving smoothness.

Introduction

It is generally accepted that the best quality halfto
are those that result in an error spectrum that greatl
tenuates low frequency error and allows uniformly d
tributed error in the high frequencies. This is describ
as a blue noise distribution.1 Examples of algorithms tha
achieve this vary from Floyd and Steinberg’s error d
fusion,2 to dithering with the blue noise mask,3 to itera-
tive techniques that explicitly shape the error with
visual model based error constraint.4 These all provide a
pleasing balance between grayscale reproduction 
edge rendering. Unfortunately, allowing unconstrain
errors in the high frequency can compromise image qu
ity because, for some image content, it is the high freque
information that is of most significance to the observ
For example, in order to discern if a house exterior is
wood or shingles, it is necessary to see the cracks s
rating the shingles. Several researchers have tried t
solve this by incorporating image dependent schemes
enhance edges without sacrificing the pleasing blue n
properties.5,6 The improvements achieved with these a
proaches suggest that adapting halftoning technique
local image content is a promising direction of resear

The work presented here seeks to improve halft
quality by identifying and preserving distinctive regio
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of texture in an image. The assumption is that, for so
image content, the high frequency information is the m
perceptually significant and that constraining the h
frequency error will improve perceived image quali
Previous work used the image error spectrum to ad
error constraints for images of uniform texture.7 This
work extends the concept of adapting error constra
to general images. This is achieved by a three stage
cess. First a preprocessing stage uses a multicha
model of human texture perception to define feature v
tors for each pixel. The feature vectors contain inform
tion about the perceptually significant component at e
pixel. Second, an evaluation stage interprets the fea
vector to determine an error metric that will prese
the significant perceptual components at each pi
Third, an iterative halftoning stage minimizes the er
constraint that has been defined for each pixel. An o
view of the system can be seen in Figure 1.

Texture Model
Much work supports the use of a multichannel fil

bank as the mechanism by which texture is perceive
humans.8,9 Multichannel filter banks have been used f
many texture discrimination problems in image proce
ing. The specific analytical form of the model vari
among implementations but they all have several f
tures in common. They all have a set of bandpass fil
that are tuned to different radial frequencies and ori
tations. In all cases, the output of the filters provid
feature information that is used to discriminate textu
How the channel output is used varies.

For this study, we choose the multichannel filters
be a set of M filters used by Coggins and Jain for tex
segmentation.10 These are a bank of radially symmetr
filters tuned to different frequencies and a bank of fo
angular filters. The radial filters, defined by Ginsburg11
dded in a
r at ea

edure to
Figure 1. Overview of the three stages of processing. Preprocessing incorporates a multichannel texture model embe
contrast normalization model to detect perceptually significant information. The evaluation stage uses the feature vectoch
pixel to define an error constraint adapted to neighborhood information. The binarization stage uses an iterative proc
produce a halftone.
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are Gaussian function with center frequencies one
tave apart on a log scale. The extent of the filters 
between 1 and 2 octaves. The number of filters is M
log2N + 1 for a 2N × 2N region. Specifically, the mth
channel filter is defined in the frequency domain as

    H f ek r

f ur k

( )
.

ln( ) ln( )

=
−

−( )
0 5

2

2σ (1)

where fr is radial frequency, σ = 0.275, and uk = 2k–1. The
angular filter is defined as

  
    G u v e

A u v

θ

θ
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.
( , , )

=
−0 5

2

2 (2)

where σ = 17.8533 and A(θ,u,v) = min[|θ – arctan(v/u)|,
|θ - 180) - arctan(v/u)|], θ = 0°,45°,90°,135°.

This filterbank is part of a larger model of contra
normalization proposed by Heeger and shown in Fig
2, taken from [12]. This model suggests normalizing 
output of each channel at a single location with poo
neighborhood information. The N × N input image is
filtered by the bank of M filters. In the spatial doma
the magnitude of the deviation about the mean at a si
pixel indicates the relative contribution of that ener
band at that point relative to the other spatial locati
in the image. Each channel output is standardized to 
mean and unit variance. The transformation of each c
nel effectively boosts the high frequencies. Then 
output of each channel is modified using pooled inf
mation from all channels at an individual pixel. We d
viate from the contrast normalization model by dividi
by the standard deviation of the values rather then
viding by the total energy.

Figure 2. Model of contrast normalization that produces t
final feature vector.

Evaluation of the Feature Vector

The input to the evaluation stage is the set of N × N
feature vectors,Vij, each with M elements, defined b
preprocessing. The goal is to define an error metri
each pixel that will preserve high frequency inform
tion without sacrificing the desirable attenuation of lo
frequencies achieved with a global low-pass vis
model. In order to avoid introduction of grainy artifac
in lower frequencies, we decided on a simple appro
of defining a set of k possible error constraints, denot
ek, that are all high pass in nature but that vary in drop

image
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frequency and slope. Shifting the drop off in this w
allows suppression of high frequency errors witho
sacrificing blue noise characteristics. Which of the k er-
ror constraints to apply is determined by comparing 
values of the feature vector to a predefind thresholdt.

We found that comparing the V ij [1] to t was suffi-
cient to identify areas of fine detail that needed to
enhanced from other parts of the image that were 
rendered with a smoother constraint. The interpreta
is that because each feature vector is standardized w
itself, each element contains information about the 
tribution of the other elements relative to itself. V ij [1]
represents low frequency information. When its va
falls below the threshold, its energy is relatively ins
nificant compared to the distribution of energy in t
other, higher frequency channels and the higher frequ
cies should be preserved. When it is above the thr
old, its energy is more perceptually significant than 
distribution of energy in the other, higher frequency ch
nels and thus more error in the high frequencies ca
tolerated. This is illustrated with an example in Figure
Figure 3a shows the values of V ij [1] for every pixel in the
image. Figure 3b shows which pixels for which e1 was
selected. Constraint e2 was applied to all other pixels.

Figure 3. (a) First element of the feature vector for all pixe
(b) Pixels selected from error constraint e1 with t = 0.5.

Binarization

The final stage takes as input the original grayscale
age and the N × N error constraints to produce a ha
tone. This is implemented as an iterative procedure ba
heavily on the work of Pappas4 because of its simplicity
and its sensitivity to the error metric. Specifically, t
algorithm developed will test the effect of changing on
one pixel at a time and it will compute the error in t
spatial domain over a neighborhood of the candid
pixel. The algorithm that will generate a halftone acco
ing to the error metric developed in this study.

1. Initialize binary image with a simple thresholdin
method.

2. For each pixel (i,j ) in the image
Select binary value that minimizes the error met
at pixel (i,j )

3. Repeat (2) until convergence

Let E(h(i,j )) designate the error metric computed
pixel (i,j ) and let h((i,j) indicate the possible values 
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the output pixel h(i,j). Then E(0) represents the er
metric computed when h(i,j)=0 and E(1) represents 
error metric computed when h(i,j)=1. The algorithm w
select for output the value that minimizes E(h(i,j)).

Results

The algorithm described above was implemented i
on an HP 715/80 workstation. The multichann
filterbank was implemented with parameters s = 0.275
and without angular sensitivity. The set of error co
straints were computed as low-pass modifications 
contrast sensitivity function described in previous wor3

Constraint e1 was generated with viewing distance of 
inches and a print resolution of 150dpi. This filter pr
duces smoothing grayscale reproduction. Constraine2

was generated with viewing distance of 36 inches an
print resolution of 300dpi. This filter produces edge e
hancing effects The constraints were realized as 1
order FIR filters. Data was a set of 256 × 256 8bpp
grayscale images with varying subjects including peo
landscapes, and textures. The images were printe
150dpi.

Figure 4. a) input grayscale, (b)upper right, e1 applied g
bally, (c) lower left, e2 applied globally, (d) adaptive erro
constraints.

Two examples typical of the results are shown
Figures 4. Figures 4a depicts the input grayscale im
For comparison with non-adaptive constraints, halfto
were generated in which the same error constraint 
applied at every location in the image. Figure 4b is 
halftone that is generated when a visual model ba
error metric e1 is used for every location in the imag
This represents the widely accepted balance betw
smooth grayscale reproduction and edge rendering
is produced by minimizing the error with respect to
visual model. This is a good quality image that is ve
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smooth but that has dulled details. Observe the smo
rendition of the leaf in the lower left corner. Figure 4c
the halftone that is generated when error constraint e2 is
applied at every location in the image. This is also a g
quality image that is very sharp but that is somew
grainy. This is best observed by noting the enhan
detail of the ribbing in the dark petals and the grainin
in the bright petals. Figure 4d is the product of the ad
tive technique that detects the areas that need enha
ment but that leaves the other regions smooth. N
particularly, that the detailed ribbing in the petals is n
apparent without introduction of graininess in the brig
petals.

Figure 5 similarly represents another picture. F
ure 5a is the input grayscale. Figures 5b and 5c are h
tones generated when constraints e1 and e2, respectively,
are applied globally. Figure 5d is the result of the ad
tive halftone algorithm described here. Note the sha
ness in the feathers and hair from Figure 5c are appa
with the smoothness of the face from Figure 5b.

Figure 5. a) input grayscale, (b)upper right, e1 applied glo-
bally, (c) lower left, e2 applied globally, (d) adaptive error
constraints.

Discussion

Adaptive halftone constraints based on image con
can improve halfone quality. The texture model used h
to identify significant high frequency distributions i
neighborhoods of the image clearly helps select the p
tions of the image that benefit from edge enhancem
while allowing the rest of the image to be rendered m
smoothly. The implementation described here wa
much simpler model than could be used. Future w
will include adding angular sensitivity to expand the ba
of filters. It will also include a larger set of error con
straints that will refine the optimum constraint. Anoth
direction of experimentation will be to vary the meth
Chapter III—Algorithm—197
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of evaluation to test weighted combinations of chan
outputs against a threshold. There is much to be stu
in order to tune the model for optimal performanc
However, the results presented here indicate the con
normalization model to be very promising as a mean
adapt halftone error constraints.
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