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Abstract of texture in an image. The assumption is that, for some
image content, the high frequency information is the most
We develop an adaptive halftoning technique that incorperceptually significant and that constraining the high
porates a multichannel texture model. A filter bank isfrequency error will improve perceived image quality.
used to define a feature vector for each pixel. The feaPrevious work used the image error spectrum to adapt
ture vector is used to select an error constraint that wikrror constraints for images of uniform texttré&his
preserve neighborhood features. Results indicate thatork extends the concept of adapting error constraints
perceptually significant features can be enhanced whileo general images. This is achieved by a three stage pro-

preserving smoothness. cess. First a preprocessing stage uses a multichannel
) model of human texture perception to define feature vec-
Introduction tors for each pixel. The feature vectors contain informa-

tion about the perceptually significant component at each

It is generally accepted that the best quality halftonepixel. Second, an evaluation stage interprets the feature
are those that result in an error spectrum that greatly atector to determine an error metric that will preserve
tenuates low frequency error and allows uniformly disthe significant perceptual components at each pixel.
tributed error in the high frequencies. This is described hird, an iterative halftoning stage minimizes the error
as a blue noise distributigriExamples of algorithms that constraint that has been defined for each pixel. An over-
achieve this vary from Floyd and Steinberg’s error dif-view of the system can be seen in Figure 1.
fusion? to dithering with the blue noise masiq itera-
tive techniques that explicitly shape the error with aTexture Model
visual model based error constraifithese all provide a Much work supports the use of a multichannel filter
pleasing balance between grayscale reproduction arzhnk as the mechanism by which texture is perceived by
edge rendering. Unfortunately, allowing unconstrainechumans’:® Multichannel filter banks have been used for
errors in the high &quency can compromise image qual-many texture discrimination problems in image process-
ity because, for some image content, it is the high frequendpg. The specific analytical form of the model varies
information that is of most significance to the observeramong implementations but they all have several fea-
For example, in order to discern if a house exterior is ofures in common. They all have a set of bandpass filters
wood or shingles, it is necessary to see the cracks sepidtat are tuned to different radial frequencies and orien-
rating the shingles. Several researchers have tried to reations. In all cases, the output of the filters provides
solve this by incorporating image dependent schemes théature information that is used to discriminate texture.
enhance edges without sacrificing the pleasing blue noigdow the channel output is used varies.
properties:® The improvements achieved with these ap-  For this study, we choose the multichannel filters to
proaches suggest that adapting halftoning techniques te a set of M filters used by Coggins and Jain for texture
local image content is a promising direction of researchsegmentatio® These are a bank of radially symmetric

The work presented here seeks to improve halftonélters tuned to different frequencies and a bank of four
guality by identifying and preserving distinctive regionsangular filters. The radial filters, defined by Ginsbtirg,

imagel:?" Preprocessingt} error metric halftone
f” Preprocessing Vij Evaluation Eij Binarization hlj

Figure 1. Overview of the three stages of processing. Preprocessing incorporates a multichannel texture model embedded in a

contrast normalization model to detect perceptually significant information. The evaluation stage uses the feature vebtor at ea
pixel to define an error constraint adapted to neighborhood information. The binarization stage uses an iterative procedure to
produce a halftone.
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are Gaussian function with center frequencies one odrequency and slope. Shifting the drop off in this way
tave apart on a log scale. The extent of the filters arallows suppression of high frequency errors without
between 1 and 2 octaves. The number of filters is M sacrificing blue noise characteristics. Which of khax-

log,N + 1 for a 2Nx 2N region. Specifically, thenth
channel filter is defined in the frequency domain as

o (In(f)-InG,))*
H,(f)=e o (1)

wheref, is radial frequencyy = 0.275, andi, = 2<% The
angular filter is defined as

2
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Gy(u,v)=e g (2)

whereo = 17.8533 and A,u,Vv) = min[|@ — arctany/u)|,
|6 - 180) - arctanfu)|], 6 = 0°,45°,90°,135".

ror constraints to apply is determined by comparing the
values of the feature vector to a predefind threshold

We found that comparing thé;[1] to t was sulffi-
cient to identify areas of fine detail that needed to be
enhanced from other parts of the image that were best
rendered with a smoother constraint. The interpretation
is that because each feature vector is standardized within
itself, each element contains information about the dis-
tribution of the other elements relative to itseff[1]
represents low frequency information. When its value
falls below the threshold, its energy is relatively insig-
nificant compared to the distribution of energy in the
other, higher frequency channels and the higher frequen-
cies should be preserved. When it is above the thresh-
old, its energy is more perceptually significant than the
distribution of energy in the other, higher frequency chan-

This filterbank is part of a larger model of contrastnels and thus more error in the high frequencies can be
normalization proposed by Heeger and shown in Figuréolerated. This is illustrated with an example in Figure 3.

2, taken from [12]. This model suggests normalizing theFigure 3a shows the values\6f{1] for every pixel in the
output of each channel at a single location with pooledmage. Figure 3b shows which pixels for whighwas
neighborhood information. The M N input image is selected. Constrair, was applied to all other pixels.
filtered by the bank of M filters. In the spatial domain,

the magnitude of the deviation about the mean at a singlFm %!

pixel indicates the relative contribution of that energy
band at that point relative to the other spatial locationg
in the image. Each channel output is standardized to zer
mean and unit variance. The transformation of each cha
nel effectively boosts the high frequencies. Then th

output of each channel is modified using pooled infor-§§
mation from all channels at an individual pixel. We de-
viate from the contrast normalization model by dividing
by the standard deviation of the values rather then dif#

viding by the total energy.

P R ~
_ alol
image| I
o \5 —
Wi Ty
W
Linear  Normalization Output
% operator nonlinearity

Figure 3. (a) First element of the feature vector for all pixels.
(b) Pixels selected from error constraintweith t = 0.5.

Binarization

The final stage takes as input the original grayscale im-
age and the N N error constraints to produce a half-
tone. This is implemented as an iterative procedure based
heavily on the work of Papp#lsecause of its simplicity
and its sensitivity to the error metric. Specifically, the

Figure 2. Model of contrast normalization that produces thealgorithm developed will test the effect of changing only

final feature vector.
Evaluation of the Feature Vector

The input to the evaluation stage is the set ok N

feature vectory/;, each with M elements, defined by 1.

one pixel at a time and it will compute the error in the
spatial domain over a neighborhood of the candidate
pixel. The algorithm that will generate a halftone accord-
ing to the error metric developed in this study.

Initialize binary image with a simple thresholding

preprocessing. The goal is to define an error metric at
each pixel that will preserve high frequency informa-2.
tion without sacrificing the desirable attenuation of low
frequencies achieved with a global low-pass visual
model. In order to avoid introduction of grainy artifacts 3.
in lower frequencies, we decided on a simple approach
of defining a set ok possible error constraints, denoted

method.

For each pixelij) in the image

Select binary value that minimizes the error metric
at pixel §,j)

Repeat (2) until convergence

Let E(h(,j)) designate the error metric computed at

e, that are all high pass in nature but that vary in dropofpixel (i,j) and let h((i,j) indicate the possible values of
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the output pixel h(i,j). Then E(0) represents the errosmooth but that has dulled details. Observe the smooth
metric computed when h(i,j)=0 and E(1) represents theendition of the leaf in the lower left corner. Figure 4c is
error metric computed when h(i,j)=1. The algorithm will the halftone that is generated when error constgiist

select for output the value that minimizes E(h(i,j)). applied at every location in the image. This is also a good
guality image that is very sharp but that is somewhat
Results grainy. This is best observed by noting the enhanced

detail of the ribbing in the dark petals and the graininess
The algorithm described above was implemented in @n the bright petals. Figure 4d is the product of the adap-
on an HP 715/80 workstation. The multichanneltive technique that detects the areas that need enhance-
filterbank was implemented with parameters 0.275 ment but that leaves the other regions smooth. Note,
and without angular sensitivity. The set of error con-particularly, that the detailed ribbing in the petals is now
straints were computed as low-pass modifications to apparent without introduction of graininess in the bright
contrast sensitivity function described in previous work. petals.
Constrainte, was generated with viewing distance of 36 Figure 5 similarly represents another picture. Fig-
inches and a print resolution of 150dpi. This filter pro-ure 5a is the input grayscale. Figures 5b and 5c are half-
duces smoothing grayscale reproduction. Constegint tones generated when constraigtande,, respectively,
was generated with viewing distance of 36 inches and are applied globally. Figure 5d is the result of the adap-
print resolution of 300dpi. This filter produces edge en+ive halftone algorithm described here. Note the sharp-
hancing effects The constraints were realized as 19thess in the feathers and hair from Figure 5c¢ are apparent
order FIR filters. Data was a set of 286256 8bpp with the smoothness of the face from Figure 5b.
grayscale images with varying subjects including people,
landscapes, and textures. The images were printed at
150dpi.

Figure 5. a) input grayscale, (b)upper right, &plied glo-
bally, (c) lower left, ¢ applied globally, (d) adaptive error
constraints.

Figure 4. a) input grayscale, (b)upper right, el applied glo- ) )

bally, (c) lower left, e applied globally, (d) adaptive error Discussion

constraints.

Adaptive halftone constraints based on image content
Two examples typical of the results are shown incan improve halfone quality. The texture model used here
Figures 4. Figures 4a depicts the input grayscale imagéo identify significant high frequency distributions in
For comparison with non-adaptive constraints, halftoneseighborhoods of the image clearly helps select the por-
were generated in which the same error constraint wasons of the image that benefit from edge enhancement
applied at every location in the image. Figure 4b is thavhile allowing the rest of the image to be rendered more
halftone that is generated when a visual model basesmoothly. The implementation described here was a
error metrice, is used for every location in the image. much simpler model than could be used. Future work
This represents the widely accepted balance betweenill include adding angular sensitivity to expand the bank
smooth grayscale reproduction and edge rendering thaf filters. It will also include a larger set of error con-
is produced by minimizing the error with respect to astraints that will refine the optimum constraint. Another
visual model. This is a good quality image that is verydirection of experimentation will be to vary the method
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of evaluation to test weighted combinations of channel
outputs against a threshold. There is much to be studied
in order to tune the model for optimal performance.
However, the results presented here indicate the contra5st
normalization model to be very promising as a means to
adapt halftone error constraints. 6.
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